Cargando…
Analyzing large-scale spiking neural data with HRLAnalysis(™)
The additional capabilities provided by high-performance neural simulation environments and modern computing hardware has allowed for the modeling of increasingly larger spiking neural networks. This is important for exploring more anatomically detailed networks but the corresponding accumulation in...
Autores principales: | Thibeault, Corey M., O'Brien, Michael J., Srinivasa, Narayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942659/ https://www.ncbi.nlm.nih.gov/pubmed/24634655 http://dx.doi.org/10.3389/fninf.2014.00017 |
Ejemplares similares
-
A novel analytical characterization for short-term plasticity parameters in spiking neural networks
por: O'Brien, Michael J., et al.
Publicado: (2014) -
Efficiently passing messages in distributed spiking neural network simulation
por: Thibeault, Corey M., et al.
Publicado: (2013) -
Using a hybrid neuron in physiologically inspired models of the basal ganglia
por: Thibeault, Corey M., et al.
Publicado: (2013) -
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2013)