Cargando…
A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy
The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s(−1). Based on the experimental data, the improved Arrhenius-type constitutive model and th...
Autores principales: | Quan, Guo-zheng, Yu, Chun-tang, Liu, Ying-ying, Xia, Yu-feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943286/ https://www.ncbi.nlm.nih.gov/pubmed/24688358 http://dx.doi.org/10.1155/2014/108492 |
Ejemplares similares
-
Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network
por: Galimzyanov, Bulat N., et al.
Publicado: (2023) -
Flow Behavior of AA5005 Alloy at High Temperature and Low Strain Rate Based on Arrhenius-Type Equation and Back Propagation Artificial Neural Network (BP-ANN) Model
por: Li, Sijia, et al.
Publicado: (2022) -
Understanding the effect of irradiation temperature on microstructural evolution of 20MnMoNi55 steel
por: Srivastava, A. P., et al.
Publicado: (2022) -
Prediction of Flow Stress of Annealed 7075 Al Alloy in Hot Deformation Using Strain-Compensated Arrhenius and Neural Network Models
por: Yang, Hongbin, et al.
Publicado: (2021) -
New Heusler compounds in Ni-Mn-In and Ni-Mn-Sn alloys
por: Li, X.-Z., et al.
Publicado: (2019)