Cargando…

Optimization of the X-ray incidence angle in photoelectron spectrometers

The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy ra...

Descripción completa

Detalles Bibliográficos
Autor principal: Strocov, Vladimir N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943557/
https://www.ncbi.nlm.nih.gov/pubmed/23765292
http://dx.doi.org/10.1107/S0909049513007747
Descripción
Sumario:The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy range show that the optimal angle becomes more grazing with increasing energy, from a few tens of degrees at 50 eV to about one degree at 3.5 keV. This is accompanied by an intensity gain of a few tens of times, as long as the X-ray footprint on the sample stays within the analyzer field of view. This trend is fairly material-independent. The obtained results bear immediate implications for the design of (synchrotron-based) photoelectron spectrometers.