Cargando…
Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems
Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniqu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943715/ https://www.ncbi.nlm.nih.gov/pubmed/24599307 http://dx.doi.org/10.1371/journal.pone.0086592 |
_version_ | 1782306295337975808 |
---|---|
author | Rendall, Anthony R. Sutherland, Duncan R. Cooke, Raylene White, John |
author_facet | Rendall, Anthony R. Sutherland, Duncan R. Cooke, Raylene White, John |
author_sort | Rendall, Anthony R. |
collection | PubMed |
description | Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as ‘events’. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas. |
format | Online Article Text |
id | pubmed-3943715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39437152014-03-10 Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems Rendall, Anthony R. Sutherland, Duncan R. Cooke, Raylene White, John PLoS One Research Article Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as ‘events’. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas. Public Library of Science 2014-03-05 /pmc/articles/PMC3943715/ /pubmed/24599307 http://dx.doi.org/10.1371/journal.pone.0086592 Text en © 2014 Rendall et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rendall, Anthony R. Sutherland, Duncan R. Cooke, Raylene White, John Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title | Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title_full | Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title_fullStr | Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title_full_unstemmed | Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title_short | Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems |
title_sort | camera trapping: a contemporary approach to monitoring invasive rodents in high conservation priority ecosystems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943715/ https://www.ncbi.nlm.nih.gov/pubmed/24599307 http://dx.doi.org/10.1371/journal.pone.0086592 |
work_keys_str_mv | AT rendallanthonyr cameratrappingacontemporaryapproachtomonitoringinvasiverodentsinhighconservationpriorityecosystems AT sutherlandduncanr cameratrappingacontemporaryapproachtomonitoringinvasiverodentsinhighconservationpriorityecosystems AT cookeraylene cameratrappingacontemporaryapproachtomonitoringinvasiverodentsinhighconservationpriorityecosystems AT whitejohn cameratrappingacontemporaryapproachtomonitoringinvasiverodentsinhighconservationpriorityecosystems |