Cargando…

17β-Estradiol Alters Rat Type-II Alveolar Cell Recovery from High Levels of Ozone

Respiratory health is negatively impacted by exposure to ozone or to estrogens. Increasingly, individuals have simultaneous environmental exposure to both compounds. Characterizing the cellular responses stimulated by the combination of ozone and estrogens, therefore, is crucial to our complete unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Chalfant, Madeleine, Bernd, Karen K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944009/
https://www.ncbi.nlm.nih.gov/pubmed/24599035
http://dx.doi.org/10.1371/journal.pone.0090530
Descripción
Sumario:Respiratory health is negatively impacted by exposure to ozone or to estrogens. Increasingly, individuals have simultaneous environmental exposure to both compounds. Characterizing the cellular responses stimulated by the combination of ozone and estrogens, therefore, is crucial to our complete understanding of the compounds' environmental health impacts. Our work introduces an alveolar cell culture model with defined media that provides evidence of ozone damage and determines sex hormones alter the cells' susceptibility to oxidative damage. Specifically, we investigated the individual and combined effects of environmentally relevant levels of ozone and 17β-estradiol on non-cancerous rat, type-II alveolar cells by examining biomarkers of cellular health and redox balance. The data reveal a complex role for 17β-estradiol in cellular recovery from 1 hr exposure to high ozone levels. At 0.5 hr post-ozone necrosis and inflammation markers show 17β-estradiol augments the detrimental effects of 350 ppb ozone, but after 24 hr of recovery, steroid treatment alters glutathione redox ratio and allows cellular proliferation.