Cargando…

The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages

The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progeni...

Descripción completa

Detalles Bibliográficos
Autores principales: Koe, Chwee Tat, Li, Song, Rossi, Fabrizio, Wong, Jack Jing Lin, Wang, Yan, Zhang, Zhizhuo, Chen, Keng, Aw, Sherry Shiying, Richardson, Helena E, Robson, Paul, Sung, Wing-Kin, Yu, Fengwei, Gonzalez, Cayetano, Wang, Hongyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944433/
https://www.ncbi.nlm.nih.gov/pubmed/24618901
http://dx.doi.org/10.7554/eLife.01906
Descripción
Sumario:The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Brahma (Brm) complex functions cooperatively with another chromatin remodeling factor, Histone deacetylase 3 (HDAC3) to suppress the formation of ectopic type II neuroblasts. We show that multiple components of the Brm complex and HDAC3 physically associate with Earmuff (Erm), a type II-specific transcription factor that prevents dedifferentiation of INPs into neuroblasts. Consistently, the predicted Erm-binding motif is present in most of known binding loci of Brm. Furthermore, brm and hdac3 genetically interact with erm to prevent type II neuroblast overgrowth. Thus, the Brm-HDAC3-Erm repressor complex suppresses dedifferentiation of INPs back into type II neuroblasts. DOI: http://dx.doi.org/10.7554/eLife.01906.001