Cargando…

Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no det...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Xiang Y., Nesset, Cecilie Kasi, Damme, Markus, Løberg, Else-Marit, Lübke, Torben, Mæhlen, Jan, Andersson, Kristin B., Lorenzo, Petra I., Roos, Norbert, Thoresen, G. Hege, Rustan, Arild C., Kase, Eili T., Eskild, Winnie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Limited 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944495/
https://www.ncbi.nlm.nih.gov/pubmed/24487409
http://dx.doi.org/10.1242/dmm.014050
Descripción
Sumario:Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1(gt/gt) mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1(gt/gt) liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1(gt/gt) Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1(gt/gt) mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.