Cargando…

Studies Based on Preparation, Physical Characteristics, and Cellular Pharmacological Activities of Thin PLGA Film Loaded with Geniposide

In this primary study, thin polylactic-co-glycolic acid (PLGA) film loaded with geniposide was first prepared and demonstrated on both physical and pharmacological aspects for its potential application on drug-eluting vascular stents. Physical parameters of geniposide-loaded thin film, such as cryst...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Haiyan, Liu, Hao, Huang, Nan, He, Ya, Lei, Tingting, Wang, Xin, Yang, Ming, Luo, Guangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944942/
https://www.ncbi.nlm.nih.gov/pubmed/24693321
http://dx.doi.org/10.1155/2014/352423
Descripción
Sumario:In this primary study, thin polylactic-co-glycolic acid (PLGA) film loaded with geniposide was first prepared and demonstrated on both physical and pharmacological aspects for its potential application on drug-eluting vascular stents. Physical parameters of geniposide-loaded thin film, such as crystal structure, molecular spectral characteristics, and release behavior in the whole process were detected. From X-Ray diffraction, the characteristic peak of crystal geniposide disappeared on geniposide-loaded PLGA film (GLPF) after it formed, which meant there was no agglomeration phenomenon, as geniposide was distributed in the form of single molecule. According to scanning electron microscopy (SEM) figure, the GLPF was more flat and uniform with better compactness. It inferred that release behavior of geniposide at the early stage (0~15 d) was in the form of free diffusion. Carrier PLGA began to degrade 15 days later, so the residual geniposide was also dissolved. Cellular pharmacological effects of geniposide on endothelial cells (ECs) and smooth muscle cells (SMCs) were also demonstrated on GLPF. 5% and 10% (w/w) geniposide-loaded PLGA (60 : 40) membrane indicated its significant effect on ECs promotion and SMCs inhibition. All provided feasible evidences for the development of new geniposide-coating vascular stent using PLGA as carrier.