Cargando…
Universal Count Correction for High-Throughput Sequencing
We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base seque...
Autores principales: | Hashimoto, Tatsunori B., Edwards, Matthew D., Gifford, David K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945112/ https://www.ncbi.nlm.nih.gov/pubmed/24603409 http://dx.doi.org/10.1371/journal.pcbi.1003494 |
Ejemplares similares
-
High-resolution genetic mapping with pooled sequencing
por: Edwards, Matthew D, et al.
Publicado: (2012) -
Centroid based clustering of high throughput sequencing reads based on n-mer counts
por: Solovyov, Alexander, et al.
Publicado: (2013) -
Author Correction: High throughput single cell counting in droplet-based microfluidics
por: Lu, Heng, et al.
Publicado: (2020) -
A benchmark study of k-mer counting methods for high-throughput sequencing
por: Manekar, Swati C, et al.
Publicado: (2018) -
Improving transcriptome assembly through error correction of high-throughput sequence reads
por: MacManes, Matthew D., et al.
Publicado: (2013)