Cargando…
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from “shilling” attacks....
Autores principales: | Gao, Min, Yuan, Quan, Ling, Bin, Xiong, Qingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945428/ https://www.ncbi.nlm.nih.gov/pubmed/24693248 http://dx.doi.org/10.1155/2014/845897 |
Ejemplares similares
-
Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems
por: Gao, Min, et al.
Publicado: (2015) -
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
por: Zhou, Wei, et al.
Publicado: (2015) -
Promoting Cold-Start Items in Recommender Systems
por: Liu, Jin-Hu, et al.
Publicado: (2014) -
Interval Timing Deficits and Abnormal Cognitive Development
por: Falter, Christine M., et al.
Publicado: (2011) -
A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation
por: Kumar, Suresh, et al.
Publicado: (2022)