Cargando…
Taming Explosive Growth through Dynamic Random Links
We study the dynamics of a collection of nonlinearly coupled limit cycle oscillators relevant to a wide class of systems, ranging from neuronal populations to electrical circuits, over network topologies varying from a regular ring to a random network. We find that for sufficiently strong coupling s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945482/ https://www.ncbi.nlm.nih.gov/pubmed/24603561 http://dx.doi.org/10.1038/srep04308 |
Sumario: | We study the dynamics of a collection of nonlinearly coupled limit cycle oscillators relevant to a wide class of systems, ranging from neuronal populations to electrical circuits, over network topologies varying from a regular ring to a random network. We find that for sufficiently strong coupling strengths the trajectories of the system escape to infinity in the regular ring network. However when a fraction of the regular connections are dynamically randomized, the unbounded growth is suppressed and the system remains bounded. Further, we find a scaling relation between the critical fraction of random links necessary for successful prevention of explosive behavior and the network rewiring time-scale. These results suggest a mechanism by which blow-ups may be controlled in extended oscillator systems. |
---|