Cargando…
Cleavage Factor I Links Transcription Termination to DNA Damage Response and Genome Integrity Maintenance in Saccharomyces cerevisiae
During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3′-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945788/ https://www.ncbi.nlm.nih.gov/pubmed/24603480 http://dx.doi.org/10.1371/journal.pgen.1004203 |
Sumario: | During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3′-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability. |
---|