Cargando…

Electronic Chemical Potentials of Porous Metal–Organic Frameworks

[Image: see text] The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level o...

Descripción completa

Detalles Bibliográficos
Autores principales: Butler, Keith T., Hendon, Christopher H., Walsh, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946036/
https://www.ncbi.nlm.nih.gov/pubmed/24447027
http://dx.doi.org/10.1021/ja4110073
_version_ 1782306604076498944
author Butler, Keith T.
Hendon, Christopher H.
Walsh, Aron
author_facet Butler, Keith T.
Hendon, Christopher H.
Walsh, Aron
author_sort Butler, Keith T.
collection PubMed
description [Image: see text] The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical, and electrical properties of porous frameworks.
format Online
Article
Text
id pubmed-3946036
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-39460362014-03-10 Electronic Chemical Potentials of Porous Metal–Organic Frameworks Butler, Keith T. Hendon, Christopher H. Walsh, Aron J Am Chem Soc [Image: see text] The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal–organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal–organic frameworks and apply it to obtain the first ionization energy for six prototype materials including zeolitic, covalent, and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical, and electrical properties of porous frameworks. American Chemical Society 2014-01-21 2014-02-19 /pmc/articles/PMC3946036/ /pubmed/24447027 http://dx.doi.org/10.1021/ja4110073 Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Butler, Keith T.
Hendon, Christopher H.
Walsh, Aron
Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title_full Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title_fullStr Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title_full_unstemmed Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title_short Electronic Chemical Potentials of Porous Metal–Organic Frameworks
title_sort electronic chemical potentials of porous metal–organic frameworks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946036/
https://www.ncbi.nlm.nih.gov/pubmed/24447027
http://dx.doi.org/10.1021/ja4110073
work_keys_str_mv AT butlerkeitht electronicchemicalpotentialsofporousmetalorganicframeworks
AT hendonchristopherh electronicchemicalpotentialsofporousmetalorganicframeworks
AT walsharon electronicchemicalpotentialsofporousmetalorganicframeworks