Cargando…

Assessment of Network Inference Methods: How to Cope with an Underdetermined Problem

The inference of biological networks is an active research area in the field of systems biology. The number of network inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and comparison among these methods. Current assessments of the perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Siegenthaler, Caroline, Gunawan, Rudiyanto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946176/
https://www.ncbi.nlm.nih.gov/pubmed/24603847
http://dx.doi.org/10.1371/journal.pone.0090481
Descripción
Sumario:The inference of biological networks is an active research area in the field of systems biology. The number of network inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and comparison among these methods. Current assessments of the performance of an inference method typically involve the application of the algorithm to benchmark datasets and the comparison of the network predictions against the gold standard or reference networks. While the network inference problem is often deemed underdetermined, implying that the inference problem does not have a (unique) solution, the consequences of such an attribute have not been rigorously taken into consideration. Here, we propose a new procedure for assessing the performance of gene regulatory network (GRN) inference methods. The procedure takes into account the underdetermined nature of the inference problem, in which gene regulatory interactions that are inferable or non-inferable are determined based on causal inference. The assessment relies on a new definition of the confusion matrix, which excludes errors associated with non-inferable gene regulations. For demonstration purposes, the proposed assessment procedure is applied to the DREAM 4 In Silico Network Challenge. The results show a marked change in the ranking of participating methods when taking network inferability into account.