Cargando…

β-Agonists Selectively Modulate Proinflammatory Gene Expression in Skeletal Muscle Cells via Non-Canonical Nuclear Crosstalk Mechanisms

The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolmus, Krzysztof, Van Troys, Marleen, Van Wesemael, Karlien, Ampe, Christophe, Haegeman, Guy, Tavernier, Jan, Gerlo, Sarah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946252/
https://www.ncbi.nlm.nih.gov/pubmed/24603712
http://dx.doi.org/10.1371/journal.pone.0090649
Descripción
Sumario:The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.