Cargando…
PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria
Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946361/ https://www.ncbi.nlm.nih.gov/pubmed/24603727 http://dx.doi.org/10.1371/journal.ppat.1003980 |
_version_ | 1782306640991617024 |
---|---|
author | Serghides, Lena McDonald, Chloe R. Lu, Ziyue Friedel, Miriam Cui, Cheryl Ho, Keith T. Mount, Howard T. J. Sled, John G. Kain, Kevin C. |
author_facet | Serghides, Lena McDonald, Chloe R. Lu, Ziyue Friedel, Miriam Cui, Cheryl Ho, Keith T. Mount, Howard T. J. Sled, John G. Kain, Kevin C. |
author_sort | Serghides, Lena |
collection | PubMed |
description | Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM. |
format | Online Article Text |
id | pubmed-3946361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39463612014-03-12 PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria Serghides, Lena McDonald, Chloe R. Lu, Ziyue Friedel, Miriam Cui, Cheryl Ho, Keith T. Mount, Howard T. J. Sled, John G. Kain, Kevin C. PLoS Pathog Research Article Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM. Public Library of Science 2014-03-06 /pmc/articles/PMC3946361/ /pubmed/24603727 http://dx.doi.org/10.1371/journal.ppat.1003980 Text en © 2014 Serghides et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Serghides, Lena McDonald, Chloe R. Lu, Ziyue Friedel, Miriam Cui, Cheryl Ho, Keith T. Mount, Howard T. J. Sled, John G. Kain, Kevin C. PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title | PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title_full | PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title_fullStr | PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title_full_unstemmed | PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title_short | PPARγ Agonists Improve Survival and Neurocognitive Outcomes in Experimental Cerebral Malaria and Induce Neuroprotective Pathways in Human Malaria |
title_sort | pparγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946361/ https://www.ncbi.nlm.nih.gov/pubmed/24603727 http://dx.doi.org/10.1371/journal.ppat.1003980 |
work_keys_str_mv | AT serghideslena ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT mcdonaldchloer ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT luziyue ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT friedelmiriam ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT cuicheryl ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT hokeitht ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT mounthowardtj ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT sledjohng ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria AT kainkevinc ppargagonistsimprovesurvivalandneurocognitiveoutcomesinexperimentalcerebralmalariaandinduceneuroprotectivepathwaysinhumanmalaria |