Cargando…
Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946503/ https://www.ncbi.nlm.nih.gov/pubmed/24608250 http://dx.doi.org/10.1371/journal.pone.0090534 |
_version_ | 1782306657398685696 |
---|---|
author | Peluso, Marisa O. Campbell, Veronica T. Harari, Joseph A. Tibbitts, Thomas T. Proctor, Jennifer L. Whitebread, Nigel Conley, James M. White, Kerry F. Kutok, Jeffery L. Read, Margaret A. McGovern, Karen Faia, Kerrie L. |
author_facet | Peluso, Marisa O. Campbell, Veronica T. Harari, Joseph A. Tibbitts, Thomas T. Proctor, Jennifer L. Whitebread, Nigel Conley, James M. White, Kerry F. Kutok, Jeffery L. Read, Margaret A. McGovern, Karen Faia, Kerrie L. |
author_sort | Peluso, Marisa O. |
collection | PubMed |
description | A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and “primes” cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for “priming” activity to occur. This “priming” appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine. |
format | Online Article Text |
id | pubmed-3946503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39465032014-03-10 Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity Peluso, Marisa O. Campbell, Veronica T. Harari, Joseph A. Tibbitts, Thomas T. Proctor, Jennifer L. Whitebread, Nigel Conley, James M. White, Kerry F. Kutok, Jeffery L. Read, Margaret A. McGovern, Karen Faia, Kerrie L. PLoS One Research Article A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and “primes” cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for “priming” activity to occur. This “priming” appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine. Public Library of Science 2014-03-07 /pmc/articles/PMC3946503/ /pubmed/24608250 http://dx.doi.org/10.1371/journal.pone.0090534 Text en © 2014 Peluso et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Peluso, Marisa O. Campbell, Veronica T. Harari, Joseph A. Tibbitts, Thomas T. Proctor, Jennifer L. Whitebread, Nigel Conley, James M. White, Kerry F. Kutok, Jeffery L. Read, Margaret A. McGovern, Karen Faia, Kerrie L. Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title | Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title_full | Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title_fullStr | Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title_full_unstemmed | Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title_short | Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity |
title_sort | impact of the smoothened inhibitor, ipi-926, on smoothened ciliary localization and hedgehog pathway activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946503/ https://www.ncbi.nlm.nih.gov/pubmed/24608250 http://dx.doi.org/10.1371/journal.pone.0090534 |
work_keys_str_mv | AT pelusomarisao impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT campbellveronicat impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT hararijosepha impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT tibbittsthomast impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT proctorjenniferl impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT whitebreadnigel impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT conleyjamesm impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT whitekerryf impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT kutokjefferyl impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT readmargareta impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT mcgovernkaren impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity AT faiakerriel impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity |