Cargando…

Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity

A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one...

Descripción completa

Detalles Bibliográficos
Autores principales: Peluso, Marisa O., Campbell, Veronica T., Harari, Joseph A., Tibbitts, Thomas T., Proctor, Jennifer L., Whitebread, Nigel, Conley, James M., White, Kerry F., Kutok, Jeffery L., Read, Margaret A., McGovern, Karen, Faia, Kerrie L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946503/
https://www.ncbi.nlm.nih.gov/pubmed/24608250
http://dx.doi.org/10.1371/journal.pone.0090534
_version_ 1782306657398685696
author Peluso, Marisa O.
Campbell, Veronica T.
Harari, Joseph A.
Tibbitts, Thomas T.
Proctor, Jennifer L.
Whitebread, Nigel
Conley, James M.
White, Kerry F.
Kutok, Jeffery L.
Read, Margaret A.
McGovern, Karen
Faia, Kerrie L.
author_facet Peluso, Marisa O.
Campbell, Veronica T.
Harari, Joseph A.
Tibbitts, Thomas T.
Proctor, Jennifer L.
Whitebread, Nigel
Conley, James M.
White, Kerry F.
Kutok, Jeffery L.
Read, Margaret A.
McGovern, Karen
Faia, Kerrie L.
author_sort Peluso, Marisa O.
collection PubMed
description A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and “primes” cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for “priming” activity to occur. This “priming” appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine.
format Online
Article
Text
id pubmed-3946503
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39465032014-03-10 Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity Peluso, Marisa O. Campbell, Veronica T. Harari, Joseph A. Tibbitts, Thomas T. Proctor, Jennifer L. Whitebread, Nigel Conley, James M. White, Kerry F. Kutok, Jeffery L. Read, Margaret A. McGovern, Karen Faia, Kerrie L. PLoS One Research Article A requisite step for canonical Hedgehog (Hh) pathway activation by Sonic Hedgehog (Shh) ligand is accumulation of Smoothened (Smo) to the primary cilium (PC). Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and “primes” cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for “priming” activity to occur. This “priming” appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses unique biophysical and pharmacological properties that result in Hh pathway inhibition in a manner that differentiates it from cyclopamine. Public Library of Science 2014-03-07 /pmc/articles/PMC3946503/ /pubmed/24608250 http://dx.doi.org/10.1371/journal.pone.0090534 Text en © 2014 Peluso et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Peluso, Marisa O.
Campbell, Veronica T.
Harari, Joseph A.
Tibbitts, Thomas T.
Proctor, Jennifer L.
Whitebread, Nigel
Conley, James M.
White, Kerry F.
Kutok, Jeffery L.
Read, Margaret A.
McGovern, Karen
Faia, Kerrie L.
Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title_full Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title_fullStr Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title_full_unstemmed Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title_short Impact of the Smoothened Inhibitor, IPI-926, on Smoothened Ciliary Localization and Hedgehog Pathway Activity
title_sort impact of the smoothened inhibitor, ipi-926, on smoothened ciliary localization and hedgehog pathway activity
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946503/
https://www.ncbi.nlm.nih.gov/pubmed/24608250
http://dx.doi.org/10.1371/journal.pone.0090534
work_keys_str_mv AT pelusomarisao impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT campbellveronicat impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT hararijosepha impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT tibbittsthomast impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT proctorjenniferl impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT whitebreadnigel impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT conleyjamesm impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT whitekerryf impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT kutokjefferyl impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT readmargareta impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT mcgovernkaren impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity
AT faiakerriel impactofthesmoothenedinhibitoripi926onsmoothenedciliarylocalizationandhedgehogpathwayactivity