Cargando…
Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion
BACKGROUND: The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946641/ https://www.ncbi.nlm.nih.gov/pubmed/24608128 http://dx.doi.org/10.1371/journal.pone.0091041 |
_version_ | 1782306673995546624 |
---|---|
author | Shin, Heesun Shannon, Casey P. Fishbane, Nick Ruan, Jian Zhou, Mi Balshaw, Robert Wilson-McManus, Janet E. Ng, Raymond T. McManus, Bruce M. Tebbutt, Scott J. |
author_facet | Shin, Heesun Shannon, Casey P. Fishbane, Nick Ruan, Jian Zhou, Mi Balshaw, Robert Wilson-McManus, Janet E. Ng, Raymond T. McManus, Bruce M. Tebbutt, Scott J. |
author_sort | Shin, Heesun |
collection | PubMed |
description | BACKGROUND: The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples. RESULTS: We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding. CONCLUSIONS: Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery. |
format | Online Article Text |
id | pubmed-3946641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39466412014-03-10 Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion Shin, Heesun Shannon, Casey P. Fishbane, Nick Ruan, Jian Zhou, Mi Balshaw, Robert Wilson-McManus, Janet E. Ng, Raymond T. McManus, Bruce M. Tebbutt, Scott J. PLoS One Research Article BACKGROUND: The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples. RESULTS: We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding. CONCLUSIONS: Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA-Seq is highly reproducible within a large dynamic range of detection and provides an accurate estimation of RNA concentration in peripheral whole blood. High-throughput sequencing is thus a promising technology for whole blood transcriptomics and biomarker discovery. Public Library of Science 2014-03-07 /pmc/articles/PMC3946641/ /pubmed/24608128 http://dx.doi.org/10.1371/journal.pone.0091041 Text en © 2014 Shin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shin, Heesun Shannon, Casey P. Fishbane, Nick Ruan, Jian Zhou, Mi Balshaw, Robert Wilson-McManus, Janet E. Ng, Raymond T. McManus, Bruce M. Tebbutt, Scott J. Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title | Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title_full | Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title_fullStr | Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title_full_unstemmed | Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title_short | Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion |
title_sort | variation in rna-seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946641/ https://www.ncbi.nlm.nih.gov/pubmed/24608128 http://dx.doi.org/10.1371/journal.pone.0091041 |
work_keys_str_mv | AT shinheesun variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT shannoncaseyp variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT fishbanenick variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT ruanjian variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT zhoumi variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT balshawrobert variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT wilsonmcmanusjanete variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT ngraymondt variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT mcmanusbrucem variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT tebbuttscottj variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion AT variationinrnaseqtranscriptomeprofilesofperipheralwholebloodfromhealthyindividualswithandwithoutglobindepletion |