Cargando…

AAV-Mediated Overexpression of Neuroserpin in the Hippocampus Decreases PSD-95 Expression but Does Not Affect Hippocampal-Dependent Learning and Memory

Neuroserpin is a serine protease inhibitor, or serpin, that is expressed in the nervous system and inhibits the protease tissue plasminogen activator (tPA). Neuroserpin has been suggested to play a role in learning and memory but direct evidence for such a role is lacking. Here we have used an adeno...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsang, Vicky W. K., Young, Deborah, During, Matthew J., Birch, Nigel P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946662/
https://www.ncbi.nlm.nih.gov/pubmed/24608243
http://dx.doi.org/10.1371/journal.pone.0091050
Descripción
Sumario:Neuroserpin is a serine protease inhibitor, or serpin, that is expressed in the nervous system and inhibits the protease tissue plasminogen activator (tPA). Neuroserpin has been suggested to play a role in learning and memory but direct evidence for such a role is lacking. Here we have used an adeno-associated virus (AAV) vector expression system to investigate the effect of neuroserpin on hippocampal-dependent learning and memory in the young adult rat. A FLAG-tagged neuroserpin construct was initially characterized by in vitro transcription/translation and transfection into HEK293 cells and shown to interact with tPA and be targeted to the secretory pathway. Targeted injection of a chimeric AAV1/2 vector expressing FLAG-neuroserpin resulted in localized overexpression in the dorsal hippocampus. Neuroserpin overexpression led to the appearance of an unstable neuroserpin:tPA complex in zymographic assays consistent with interaction with endogenous tPA in vivo. Rats overexpressing neuroserpin also showed a significant decrease in the levels of postsynaptic density protein 95, a major postsynaptic scaffolding protein. Three weeks after injection, a range of behavioural tests was performed to measure spatial and associative learning and memory, as well as innate and acquired fear. These tests provided no evidence of a role for neuroserpin in hippocampal-dependent learning and memory. In summary this study does not support a role for neuroserpin in hippocampal-dependent learning and memory in young adult rats but does suggest an involvement of neuroserpin in hippocampal synaptic plasticity.