Cargando…
High-Order Compact Difference Scheme for the Numerical Solution of Time Fractional Heat Equations
A high-order finite difference scheme is proposed for solving time fractional heat equations. The time fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme a new second-order discretization, which is based on Crank-Nicholson method, is applied for the time fracti...
Autores principales: | Karatay, Ibrahim, Bayramoglu, Serife R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947870/ https://www.ncbi.nlm.nih.gov/pubmed/24696040 http://dx.doi.org/10.1155/2014/642989 |
Ejemplares similares
-
A second-order numerical scheme for the time-fractional partial differential equations with a time delay
por: Choudhary, Renu, et al.
Publicado: (2022) -
An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations
por: Kumar, Manoj
Publicado: (2022) -
A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation
por: Khan, Muhammad Asim, et al.
Publicado: (2023) -
The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method()
por: Hosseini, Vahid Reza, et al.
Publicado: (2021) -
A Fourth-Order Compact Finite Difference Scheme for Solving the Time Fractional Carbon Nanotubes Model
por: Sweilam, N. H., et al.
Publicado: (2022)