Cargando…

Differential expression of miR-17∼92 identifies BCL2 as a therapeutic target in BCR-ABL-positive B-lineage acute lymphoblastic leukemia

Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17∼92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we in...

Descripción completa

Detalles Bibliográficos
Autores principales: Scherr, M, Elder, A, Battmer, K, Barzan, D, Bomken, S, Ricke-Hoch, M, Schröder, A, Venturini, L, Blair, H J, Vormoor, J, Ottmann, O, Ganser, A, Pich, A, Hilfiker-Kleiner, D, Heidenreich, O, Eder, M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948162/
https://www.ncbi.nlm.nih.gov/pubmed/24280866
http://dx.doi.org/10.1038/leu.2013.361
Descripción
Sumario:Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17∼92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we investigated its role in BCR-ABL translocated ALL. miR-17∼92-encoded miRNAs were significantly less abundant in BCR-ABL-positive as compared to -negative ALL-cells and overexpression of miR-17∼19b triggered apoptosis in a BCR-ABL-dependent manner. Stable isotope labelling of amino acids in culture (SILAC) followed by liquid chromatography and mass spectroscopy (LC-MS) identified several apoptosis-related proteins including Bcl2 as potential targets of miR-17∼19b. We validated Bcl2 as a direct target of this miRNA cluster in mice and humans, and, similar to miR-17∼19b overexpression, Bcl2-specific RNAi strongly induced apoptosis in BCR-ABL-positive cells. Furthermore, BCR-ABL-positive human ALL cell lines were more sensitive to pharmacological BCL2 inhibition than negative ones. Finally, in a xenograft model using patient-derived leukaemic blasts, real-time, in vivo imaging confirmed pharmacological inhibition of BCL2 as a new therapeutic strategy in BCR-ABL-positive ALL. These data demonstrate the role of miR-17∼92 in regulation of apoptosis, and identify BCL2 as a therapeutic target of particular relevance in BCR-ABL-positive ALL.