Cargando…

Enteroendocrine Cells Are Specifically Marked by Cell Surface Expression of Claudin-4 in Mouse Small Intestine

Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them bec...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagatake, Takahiro, Fujita, Harumi, Minato, Nagahiro, Hamazaki, Yoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948345/
https://www.ncbi.nlm.nih.gov/pubmed/24603700
http://dx.doi.org/10.1371/journal.pone.0090638
Descripción
Sumario:Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4), and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4(+) epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga) and other enteroendocrine cell–related genes (Ffar1, Ffar4, Gpr119), and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1). A Cld4(+)UEA-1(−) cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip), thus representing K cells, whereas a Cld4(+)UEA-1(+) cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg), pancreatic polypeptide–like peptide with N-terminal tyrosine amide (Pyy), cholecystokinin (Cck), secretin (Sct), and tryptophan hydroxylase 1 (Tph1). In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4(+) cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.