Cargando…

Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinozaki, Youichi, Nomura, Masatoshi, Iwatsuki, Ken, Moriyama, Yoshinori, Gachet, Christian, Koizumi, Schuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948352/
https://www.ncbi.nlm.nih.gov/pubmed/24710318
http://dx.doi.org/10.1038/srep04329
Descripción
Sumario:Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHg(low)) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHg(low), microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y(1) receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHg(low). These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y(1) receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHg(low) and change their phenotype into a neuroprotective one, for which astrocytic support is required.