Cargando…
Spherical Wave Propagation in a Poroelastic Medium with Infinite Permeability: Time Domain Solution
Exact time domain solutions for displacement and porepressure are derived for waves emanating from a pressurized spherical cavity, in an infinitely permeable poroelastic medium with a permeable boundary. Cases for blast and exponentially decaying step pulse loadings are considered; letter case, in t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948613/ https://www.ncbi.nlm.nih.gov/pubmed/24701190 http://dx.doi.org/10.1155/2014/813097 |
Sumario: | Exact time domain solutions for displacement and porepressure are derived for waves emanating from a pressurized spherical cavity, in an infinitely permeable poroelastic medium with a permeable boundary. Cases for blast and exponentially decaying step pulse loadings are considered; letter case, in the limit as decay constant goes to zero, also covers the step (uniform) pressure. Solutions clearly show the propagation of the second (slow) p-wave. Furthermore, Biot modulus Q is shown to have a pronounced influence on wave propagation characteristics in poroelastic media. Results are compared with solutions in classical elasticity theory. |
---|