Cargando…

Fluorescence-lifetime molecular imaging can detect invisible peritoneal ovarian tumors in bloody ascites

Blood contamination, such as bloody ascites or hemorrhages during surgery, is a potential hazard for clinical application of fluorescence imaging. In order to overcome this problem, we investigate if fluorescence-lifetime imaging helps to overcome this problem. Samples were prepared at concentration...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakajima, Takahito, Sano, Kohei, Sato, Kazuhide, Watanabe, Rira, Harada, Toshiko, Hanaoka, Hirofumi, Choyke, Peter L, Kobayashi, Hisataka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949209/
https://www.ncbi.nlm.nih.gov/pubmed/24479901
http://dx.doi.org/10.1111/cas.12343
Descripción
Sumario:Blood contamination, such as bloody ascites or hemorrhages during surgery, is a potential hazard for clinical application of fluorescence imaging. In order to overcome this problem, we investigate if fluorescence-lifetime imaging helps to overcome this problem. Samples were prepared at concentrations ranging 0.3–2.4 μm and mixed with 0–10% of blood. Fluorescence intensities and lifetimes of samples were measured using a time-domain fluorescence imager. Ovarian cancer SHIN3 cells overexpressing the D-galactose receptor were injected into the peritoneal cavity 2.5 weeks before the experiments. Galactosyl serum albumin-rhodamine green (GSA-RhodG), which bound to the D-galactose receptor and was internalized thereafter, was administered intraperitoneally to peritoneal ovarian cancer-bearing mice with various degrees of bloody ascites. In vitro study showed a linear correlation between fluorescence intensity and probe concentration (r(2) > 0.99), whereas the fluorescence lifetime was consistent (range, 3.33 ± 0.15–3.75 ± 0.04 ns). By adding 10% of blood to samples, fluorescence intensities decreased to <1%, while fluorescence lifetimes were consistent. In vivo fluorescence lifetime of GSA-RhodG stained tumors was longer than the autofluorescence lifetime (threshold, 2.87 ns). Tumor lesions under hemorrhagic peritonitis were not depicted using fluorescence intensity imaging; however, fluorescence-lifetime imaging clearly detected tumor lesions by prolonged lifetimes. In conclusion, fluorescence-lifetime imaging with GSA-RhodG depicted ovarian cancer lesions, which were invisible in intensity images, in hemorrhagic ascites.