Cargando…
Online Learning for Classification of Alzheimer Disease based on Cortical Thickness and Hippocampal Shape Analysis
OBJECTIVES: Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify A...
Autores principales: | Lee, Ga-Young, Kim, Jeonghun, Kim, Ju Han, Kim, Kiwoong, Seong, Joon-Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950267/ https://www.ncbi.nlm.nih.gov/pubmed/24627820 http://dx.doi.org/10.4258/hir.2014.20.1.61 |
Ejemplares similares
-
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease
por: Kim, Jun Pyo, et al.
Publicado: (2019) -
Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry()
por: Sørensen, Lauge, et al.
Publicado: (2016) -
Harmonization of Multicenter Cortical Thickness Data by Linear Mixed Effect Model
por: Kim, SeungWook, et al.
Publicado: (2022) -
Individual Subject Classification of Mixed Dementia from Pure Subcortical Vascular Dementia Based on Subcortical Shape Analysis
por: Kim, Hee Jin, et al.
Publicado: (2013) -
Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer's Disease Patients
por: Kälin, Andrea M., et al.
Publicado: (2017)