Cargando…

Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine

The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (...

Descripción completa

Detalles Bibliográficos
Autores principales: McDowell, Graeme S. V., Blanchard, Alexandre P., Taylor, Graeme P., Figeys, Daniel, Fai, Stephen, Bennett, Steffany A. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950492/
https://www.ncbi.nlm.nih.gov/pubmed/24701584
http://dx.doi.org/10.1155/2014/818670
_version_ 1782306994875531264
author McDowell, Graeme S. V.
Blanchard, Alexandre P.
Taylor, Graeme P.
Figeys, Daniel
Fai, Stephen
Bennett, Steffany A. L.
author_facet McDowell, Graeme S. V.
Blanchard, Alexandre P.
Taylor, Graeme P.
Figeys, Daniel
Fai, Stephen
Bennett, Steffany A. L.
author_sort McDowell, Graeme S. V.
collection PubMed
description The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5′-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site.
format Online
Article
Text
id pubmed-3950492
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39504922014-04-03 Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine McDowell, Graeme S. V. Blanchard, Alexandre P. Taylor, Graeme P. Figeys, Daniel Fai, Stephen Bennett, Steffany A. L. Biomed Res Int Research Article The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5′-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site. Hindawi Publishing Corporation 2014 2014-02-20 /pmc/articles/PMC3950492/ /pubmed/24701584 http://dx.doi.org/10.1155/2014/818670 Text en Copyright © 2014 Graeme S. V. McDowell et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
McDowell, Graeme S. V.
Blanchard, Alexandre P.
Taylor, Graeme P.
Figeys, Daniel
Fai, Stephen
Bennett, Steffany A. L.
Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title_full Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title_fullStr Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title_full_unstemmed Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title_short Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine
title_sort predicting glycerophosphoinositol identities in lipidomic datasets using valid (visualization and phospholipid identification)—an online bioinformatic search engine
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950492/
https://www.ncbi.nlm.nih.gov/pubmed/24701584
http://dx.doi.org/10.1155/2014/818670
work_keys_str_mv AT mcdowellgraemesv predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine
AT blanchardalexandrep predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine
AT taylorgraemep predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine
AT figeysdaniel predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine
AT faistephen predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine
AT bennettsteffanyal predictingglycerophosphoinositolidentitiesinlipidomicdatasetsusingvalidvisualizationandphospholipididentificationanonlinebioinformaticsearchengine