Cargando…
Experimental observation of defect pair separation triggering phase transitions
First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950641/ https://www.ncbi.nlm.nih.gov/pubmed/24618704 http://dx.doi.org/10.1038/srep04110 |
_version_ | 1782307023266775040 |
---|---|
author | Cordin, M. Lechner, B. A. J. Duerrbeck, S. Menzel, A. Bertel, E. Redinger, J. Franchini, C. |
author_facet | Cordin, M. Lechner, B. A. J. Duerrbeck, S. Menzel, A. Bertel, E. Redinger, J. Franchini, C. |
author_sort | Cordin, M. |
collection | PubMed |
description | First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality. |
format | Online Article Text |
id | pubmed-3950641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39506412014-03-19 Experimental observation of defect pair separation triggering phase transitions Cordin, M. Lechner, B. A. J. Duerrbeck, S. Menzel, A. Bertel, E. Redinger, J. Franchini, C. Sci Rep Article First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality. Nature Publishing Group 2014-03-12 /pmc/articles/PMC3950641/ /pubmed/24618704 http://dx.doi.org/10.1038/srep04110 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Cordin, M. Lechner, B. A. J. Duerrbeck, S. Menzel, A. Bertel, E. Redinger, J. Franchini, C. Experimental observation of defect pair separation triggering phase transitions |
title | Experimental observation of defect pair separation triggering phase transitions |
title_full | Experimental observation of defect pair separation triggering phase transitions |
title_fullStr | Experimental observation of defect pair separation triggering phase transitions |
title_full_unstemmed | Experimental observation of defect pair separation triggering phase transitions |
title_short | Experimental observation of defect pair separation triggering phase transitions |
title_sort | experimental observation of defect pair separation triggering phase transitions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950641/ https://www.ncbi.nlm.nih.gov/pubmed/24618704 http://dx.doi.org/10.1038/srep04110 |
work_keys_str_mv | AT cordinm experimentalobservationofdefectpairseparationtriggeringphasetransitions AT lechnerbaj experimentalobservationofdefectpairseparationtriggeringphasetransitions AT duerrbecks experimentalobservationofdefectpairseparationtriggeringphasetransitions AT menzela experimentalobservationofdefectpairseparationtriggeringphasetransitions AT bertele experimentalobservationofdefectpairseparationtriggeringphasetransitions AT redingerj experimentalobservationofdefectpairseparationtriggeringphasetransitions AT franchinic experimentalobservationofdefectpairseparationtriggeringphasetransitions |