Cargando…
Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease
Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950649/ https://www.ncbi.nlm.nih.gov/pubmed/24701562 http://dx.doi.org/10.1155/2014/131737 |
_version_ | 1782307024400285696 |
---|---|
author | Sampson, Natalie Berger, Peter Zenzmaier, Christoph |
author_facet | Sampson, Natalie Berger, Peter Zenzmaier, Christoph |
author_sort | Sampson, Natalie |
collection | PubMed |
description | Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H(2)O(2)) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H(2)O(2) and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders. |
format | Online Article Text |
id | pubmed-3950649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39506492014-04-03 Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease Sampson, Natalie Berger, Peter Zenzmaier, Christoph Biomed Res Int Review Article Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ) is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H(2)O(2)) supported by concomitant decreases in nitric oxide (NO) signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H(2)O(2) and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders. Hindawi Publishing Corporation 2014 2014-02-20 /pmc/articles/PMC3950649/ /pubmed/24701562 http://dx.doi.org/10.1155/2014/131737 Text en Copyright © 2014 Natalie Sampson et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Sampson, Natalie Berger, Peter Zenzmaier, Christoph Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title | Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title_full | Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title_fullStr | Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title_full_unstemmed | Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title_short | Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease |
title_sort | redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950649/ https://www.ncbi.nlm.nih.gov/pubmed/24701562 http://dx.doi.org/10.1155/2014/131737 |
work_keys_str_mv | AT sampsonnatalie redoxsignalingasatherapeutictargettoinhibitmyofibroblastactivationindegenerativefibroticdisease AT bergerpeter redoxsignalingasatherapeutictargettoinhibitmyofibroblastactivationindegenerativefibroticdisease AT zenzmaierchristoph redoxsignalingasatherapeutictargettoinhibitmyofibroblastactivationindegenerativefibroticdisease |