Cargando…

Regioselective Synthesis, Characterization, and Antimicrobial Activities of Some New Monosaccharide Derivatives

A regioselective acylation series of methyl α-D-glucopyranoside (1), methyl 3-O-benzoyl-4,6-O-benzylidene-α-D-mannopyranoside (1A), and methyl 4,6-O-benzylidene-2-O-(3,5-dinitrobenzoyl)-α-D-mannopyranoside (1B) has been carried out by the direct acylation method and afforded the 2,6-di-O-glucopyrano...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawsar, Sarkar M. A., Faruk, Md O., Rahman, Mohammad S., Fujii, Yuki, Ozeki, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Österreichische Apotheker-Verlagsgesellschaft 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951222/
https://www.ncbi.nlm.nih.gov/pubmed/24634838
http://dx.doi.org/10.3797/scipharm.1308-03
Descripción
Sumario:A regioselective acylation series of methyl α-D-glucopyranoside (1), methyl 3-O-benzoyl-4,6-O-benzylidene-α-D-mannopyranoside (1A), and methyl 4,6-O-benzylidene-2-O-(3,5-dinitrobenzoyl)-α-D-mannopyranoside (1B) has been carried out by the direct acylation method and afforded the 2,6-di-O-glucopyranoside and 2 or 3-O-mannopyranoside derivatives in an excellent yield. In order to obtain newer products, the 2,6-di-O-glucopyranoside derivative was further transformed to a series of 3,4-di-O-acyl derivatives containing a wide variety of functionalities in a single molecular framework. The structures of the newly synthesized compounds were elucidated on the basis of IR, (1)H-NMR, (13)C-NMR, (13)C-DEPT spectral data, and elemental analysis. These synthesized derivatives were screened for in vitro antimicrobial activities against ten human pathogenic and five phytopathogenic microorganisms. A number of test compounds showed remarkable antimicrobial activity comparable to, and in some cases even higher than, the standard antibiotics employed. It was observed that methyl 3,4-di-O-(3-chlorobenzoyl)-2,6-di-O-hexanoyl-α-D-glucopyranoside (8) exhibited a varied range of MIC from 12.5 μg/disc to 25 μg/disc by the disk diffusion method and 1000 μg/mL to 1250 μg/mL by the broth macrodilution method.