Cargando…

A Novel Function for Kojic Acid, a Secondary Metabolite from Aspergillus Fungi, as Antileishmanial Agent

Kojic acid (KA) is a fungal metabolite used as a topical treatment skin-whitening cosmetic agent for melasma in humans; however its potential as an anti-leishmanial agent is unknown. Chemotherapy is one of the most effective treatments for Leishmaniasis. However, the drugs available are expensive, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodrigues, Ana Paula D., Farias, Luis Henrique S., Carvalho, Antonio Sérgio C., Santos, Alberdan S., do Nascimento, José Luiz M., Silva, Edilene O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951352/
https://www.ncbi.nlm.nih.gov/pubmed/24621481
http://dx.doi.org/10.1371/journal.pone.0091259
Descripción
Sumario:Kojic acid (KA) is a fungal metabolite used as a topical treatment skin-whitening cosmetic agent for melasma in humans; however its potential as an anti-leishmanial agent is unknown. Chemotherapy is one of the most effective treatments for Leishmaniasis. However, the drugs available are expensive, invasive, require long-term treatment and have severe side effects. Thus, the development of new effective leishmanicidal agents is a necessity. In this study we investigated the anti-leishmanial effect of KA on L. amazonensis, following in vitro and in vivo infections. KA (50 μg/mL) was found to decrease the growth by 62% (IC(50) 34 μg/mL) and 79% (IC(50) 27.84 μg/mL) of promastigotes and amastigotes in vitro, respectively. Ultrastructural analysis of KA-treated amastigotes showed the presence of vesicles bodies into the flagellar pocket, and an intense intracellular vacuolization and swelling of the mitochondrion. During the in vitro interaction of parasites and the host cell, KA reverses the superoxide anions (O(2) (-)) inhibitory mechanism promoted by parasite. In addition, 4 weeks after KA-topical formulation treatment of infected animals, a healing process was observed with a high production of collagen fibers and a decrease in parasite burden. Thus, these results demonstrated the great potential of KA as an anti-leishmanial compound.