Cargando…

High-Frequency Stimulation of the Subthalamic Nucleus Counteracts Cortical Expression of Major Histocompatibility Complex Genes in a Rat Model of Parkinson’s Disease

High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidro...

Descripción completa

Detalles Bibliográficos
Autores principales: Grieb, Benjamin, Engler, Gerhard, Sharott, Andrew, von Nicolai, Constantin, Streichert, Thomas, Papageorgiou, Ismini, Schulte, Alexander, Westphal, Manfred, Lamszus, Katrin, Engel, Andreas K., Moll, Christian K. E., Hamel, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951430/
https://www.ncbi.nlm.nih.gov/pubmed/24621597
http://dx.doi.org/10.1371/journal.pone.0091663
Descripción
Sumario:High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats.