Cargando…

Dengue Virus Type 2 (DENV2)-Induced Oxidative Responses in Monocytes from Glucose-6-Phosphate Dehydrogenase (G6PD)-Deficient and G6PD Normal Subjects

BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-alimi, Abdullah Ahmed, Ali, Syed A., Al-Hassan, Faisal Muti, Idris, Fauziah Mohd, Teow, Sin-Yeang, Mohd Yusoff, Narazah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953068/
https://www.ncbi.nlm.nih.gov/pubmed/24625456
http://dx.doi.org/10.1371/journal.pntd.0002711
Descripción
Sumario:BACKGROUND: Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. METHODOLOGY: Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO), superoxide anions (O(2) (−)), and oxidative stress were determined and compared with normal controls. PRINCIPAL FINDINGS: Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O(2) (−) in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O(2) (−) were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. CONCLUSIONS/SIGNIFICANCE: Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.