Cargando…
A Methodology for Adaptable and Robust Ecosystem Services Assessment
Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953216/ https://www.ncbi.nlm.nih.gov/pubmed/24625496 http://dx.doi.org/10.1371/journal.pone.0091001 |
_version_ | 1782307323907145728 |
---|---|
author | Villa, Ferdinando Bagstad, Kenneth J. Voigt, Brian Johnson, Gary W. Portela, Rosimeiry Honzák, Miroslav Batker, David |
author_facet | Villa, Ferdinando Bagstad, Kenneth J. Voigt, Brian Johnson, Gary W. Portela, Rosimeiry Honzák, Miroslav Batker, David |
author_sort | Villa, Ferdinando |
collection | PubMed |
description | Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant “one model fits all” paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts. |
format | Online Article Text |
id | pubmed-3953216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39532162014-03-18 A Methodology for Adaptable and Robust Ecosystem Services Assessment Villa, Ferdinando Bagstad, Kenneth J. Voigt, Brian Johnson, Gary W. Portela, Rosimeiry Honzák, Miroslav Batker, David PLoS One Research Article Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant “one model fits all” paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts. Public Library of Science 2014-03-13 /pmc/articles/PMC3953216/ /pubmed/24625496 http://dx.doi.org/10.1371/journal.pone.0091001 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Villa, Ferdinando Bagstad, Kenneth J. Voigt, Brian Johnson, Gary W. Portela, Rosimeiry Honzák, Miroslav Batker, David A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title | A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title_full | A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title_fullStr | A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title_full_unstemmed | A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title_short | A Methodology for Adaptable and Robust Ecosystem Services Assessment |
title_sort | methodology for adaptable and robust ecosystem services assessment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953216/ https://www.ncbi.nlm.nih.gov/pubmed/24625496 http://dx.doi.org/10.1371/journal.pone.0091001 |
work_keys_str_mv | AT villaferdinando amethodologyforadaptableandrobustecosystemservicesassessment AT bagstadkennethj amethodologyforadaptableandrobustecosystemservicesassessment AT voigtbrian amethodologyforadaptableandrobustecosystemservicesassessment AT johnsongaryw amethodologyforadaptableandrobustecosystemservicesassessment AT portelarosimeiry amethodologyforadaptableandrobustecosystemservicesassessment AT honzakmiroslav amethodologyforadaptableandrobustecosystemservicesassessment AT batkerdavid amethodologyforadaptableandrobustecosystemservicesassessment AT villaferdinando methodologyforadaptableandrobustecosystemservicesassessment AT bagstadkennethj methodologyforadaptableandrobustecosystemservicesassessment AT voigtbrian methodologyforadaptableandrobustecosystemservicesassessment AT johnsongaryw methodologyforadaptableandrobustecosystemservicesassessment AT portelarosimeiry methodologyforadaptableandrobustecosystemservicesassessment AT honzakmiroslav methodologyforadaptableandrobustecosystemservicesassessment AT batkerdavid methodologyforadaptableandrobustecosystemservicesassessment |