Cargando…

A Graph-Theoretic Approach for Identifying Non-Redundant and Relevant Gene Markers from Microarray Data Using Multiobjective Binary PSO

The purpose of feature selection is to identify the relevant and non-redundant features from a dataset. In this article, the feature selection problem is organized as a graph-theoretic problem where a feature-dissimilarity graph is shaped from the data matrix. The nodes represent features and the ed...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandal, Monalisa, Mukhopadhyay, Anirban
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953335/
https://www.ncbi.nlm.nih.gov/pubmed/24625895
http://dx.doi.org/10.1371/journal.pone.0090949
Descripción
Sumario:The purpose of feature selection is to identify the relevant and non-redundant features from a dataset. In this article, the feature selection problem is organized as a graph-theoretic problem where a feature-dissimilarity graph is shaped from the data matrix. The nodes represent features and the edges represent their dissimilarity. Both nodes and edges are given weight according to the feature’s relevance and dissimilarity among the features, respectively. The problem of finding relevant and non-redundant features is then mapped into densest subgraph finding problem. We have proposed a multiobjective particle swarm optimization (PSO)-based algorithm that optimizes average node-weight and average edge-weight of the candidate subgraph simultaneously. The proposed algorithm is applied for identifying relevant and non-redundant disease-related genes from microarray gene expression data. The performance of the proposed method is compared with that of several other existing feature selection techniques on different real-life microarray gene expression datasets.