Cargando…
A Graph-Theoretic Approach for Identifying Non-Redundant and Relevant Gene Markers from Microarray Data Using Multiobjective Binary PSO
The purpose of feature selection is to identify the relevant and non-redundant features from a dataset. In this article, the feature selection problem is organized as a graph-theoretic problem where a feature-dissimilarity graph is shaped from the data matrix. The nodes represent features and the ed...
Autores principales: | Mandal, Monalisa, Mukhopadhyay, Anirban |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953335/ https://www.ncbi.nlm.nih.gov/pubmed/24625895 http://dx.doi.org/10.1371/journal.pone.0090949 |
Ejemplares similares
-
A multiobjective approach for identifying protein complexes and studying their association in multiple disorders
por: Bandyopadhyay, Sanghamitra, et al.
Publicado: (2015) -
A Parallel Multiobjective PSO Weighted Average Clustering Algorithm Based on Apache Spark
por: Ling, Huidong, et al.
Publicado: (2023) -
Parameter Identifiability and Redundancy: Theoretical Considerations
por: Little, Mark P., et al.
Publicado: (2010) -
Developing Nonlinear Customer Preferences Models for Product Design Using Opining Mining and Multiobjective PSO-Based ANFIS Approach
por: Jiang, Huimin, et al.
Publicado: (2023) -
Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes
por: Bhar, Anirban, et al.
Publicado: (2015)