Cargando…
A Gauss-Kuzmin Theorem for Continued Fractions Associated with Nonpositive Integer Powers of an Integer m ≥ 2
We consider a family {τ (m) : m ≥ 2} of interval maps which are generalizations of the Gauss transformation. For the continued fraction expansion arising from τ (m), we solve a Gauss-Kuzmin-type problem.
Autor principal: | Lascu, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953395/ https://www.ncbi.nlm.nih.gov/pubmed/24707226 http://dx.doi.org/10.1155/2014/984650 |
Ejemplares similares
-
A first digit theorem for powerful integer powers
por: Hürlimann, Werner
Publicado: (2015) -
Exploring continued fractions: from the integers to solar eclipses
por: Simoson, Andrew J
Publicado: (2019) -
Analysis in Integer and Fractional Dimensions
por: Blei, Ron
Publicado: (2003) -
Table of powers: giving integral powers of integers
por: Bickley, W G, et al.
Publicado: (1950) -
Integer programming
por: Conforti, Michele, et al.
Publicado: (2014)