Cargando…
L(2,1)-Labeling of the Strong Product of Paths and Cycles
An L(2,1)-labeling of a graph G = (V, E) is a function f from the vertex set V(G) to the set of nonnegative integers such that the labels on adjacent vertices differ by at least two and the labels on vertices at distance two differ by at least one. The span of f is the difference between the largest...
Autores principales: | Shao, Zehui, Vesel, Aleksander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953572/ https://www.ncbi.nlm.nih.gov/pubmed/24711734 http://dx.doi.org/10.1155/2014/741932 |
Ejemplares similares
-
On alpha labeling of tensor product of paths and cycles
por: L, Uma, et al.
Publicado: (2023) -
Inauguration of the Route de l’Europe cycle path
por: Bennett, Sophia Elizabeth
Publicado: (2016) -
Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
por: Papuga, Jan, et al.
Publicado: (2021) -
Implementing the L1 trigger path
por: Jacobsson, R
Publicado: (2003) -
Computing paths and cycles in biological interaction graphs
por: Klamt, Steffen, et al.
Publicado: (2009)