Cargando…
Meteorological Data Analysis Using MapReduce
In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953661/ https://www.ncbi.nlm.nih.gov/pubmed/24790576 http://dx.doi.org/10.1155/2014/646497 |
Sumario: | In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means) based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability. |
---|