Cargando…

mRNA localization to Pbodies in yeast is biphasic with many mRNAs captured in a late Bfr1pdependent wave

The relocalization of translationally repressed mRNAs to mRNA processing bodies Pbodies is a key consequence of cellular stress across many systems. Pbodies harbor mRNA degradation components and are implicated in mRNA decay, but the relative timing and control of mRNA relocalization to Pbodies is p...

Descripción completa

Detalles Bibliográficos
Autores principales: Simpson, Clare E., Lui, Jennifer, Kershaw, Christopher J., Sims, Paul F. G., Ashe, Mark P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953815/
https://www.ncbi.nlm.nih.gov/pubmed/24424022
http://dx.doi.org/10.1242/jcs.139055
Descripción
Sumario:The relocalization of translationally repressed mRNAs to mRNA processing bodies Pbodies is a key consequence of cellular stress across many systems. Pbodies harbor mRNA degradation components and are implicated in mRNA decay, but the relative timing and control of mRNA relocalization to Pbodies is poorly understood. We used the MS2GFP system to follow the movement of specific endogenous mRNAs in live Saccharomyces cerevisiae cells after nutritional stress. It appears that the relocalization of mRNA to Pbodies after stress is biphasic some mRNAs are present early, whereas others are recruited much later concomitant with recruitment of translation initiation factors, such as eIF4E. We also find that Bfr1p is a latephaselocalizing Pbody protein that is important for the delayed entry of certain mRNAS to Pbodies. Therefore, for the mRNAs tested, relocalization to Pbodies varies both in terms of the kinetics and factor requirements. This work highlights a potential new regulatory juncture in gene expression that would facilitate the overall rationalization of protein content required for adaptation to stress.