Cargando…

Functional Diversity of the Microbial Community in Healthy Subjects and Periodontitis Patients Based on Sole Carbon Source Utilization

Chronic periodontitis is one of the most common forms of biofilm-induced diseases. Most of the recent studies were focus on the dental plaque microbial diversity and microbiomes. However, analyzing bacterial diversity at the taxonomic level alone limits deeper comprehension of the ecological relevan...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yifei, Zheng, Yunfei, Hu, Jianwei, Du, Ning, Chen, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954802/
https://www.ncbi.nlm.nih.gov/pubmed/24632674
http://dx.doi.org/10.1371/journal.pone.0091977
Descripción
Sumario:Chronic periodontitis is one of the most common forms of biofilm-induced diseases. Most of the recent studies were focus on the dental plaque microbial diversity and microbiomes. However, analyzing bacterial diversity at the taxonomic level alone limits deeper comprehension of the ecological relevance of the community. In this study, we compared the metabolic functional diversity of the microbial community in healthy subjects and periodontitis patients in a creative way—to assess the sole carbon source utilization using Biolog assay, which was first applied on oral micro-ecology assessment. Pattern analyses of 95-sole carbon sources catabolism provide a community-level phenotypic profile of the microbial community from different habitats. We found that the microbial community in the periodontitis group had greater metabolic activity compared to the microbial community in the healthy group. Differences in the metabolism of specific carbohydrates (e.g. β-methyl-D-glucoside, stachyose, maltose, D-mannose, β-methyl-D-glucoside and pyruvic acid) were observed between the healthy and periodontitis groups. Subjects from the healthy and periodontitis groups could be well distinguished by cluster and principle component analyses according to the utilization of discriminate carbon sources. Our results indicate significant difference in microbial functional diversity between healthy subjects and periodontitis patients. We also found Biolog technology is effective to further our understanding of community structure as a composite of functional abilities, and it enables the identification of ecologically relevant functional differences among oral microbial communities.