Cargando…
Reverse Micelles As a Platform for Dynamic Nuclear Polarization in Solution NMR of Proteins
[Image: see text] Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955360/ https://www.ncbi.nlm.nih.gov/pubmed/24456213 http://dx.doi.org/10.1021/ja4107176 |
_version_ | 1782307563374641152 |
---|---|
author | Valentine, Kathleen G. Mathies, Guinevere Bédard, Sabrina Nucci, Nathaniel V. Dodevski, Igor Stetz, Matthew A. Can, Thach V. Griffin, Robert G. Wand, A. Joshua |
author_facet | Valentine, Kathleen G. Mathies, Guinevere Bédard, Sabrina Nucci, Nathaniel V. Dodevski, Igor Stetz, Matthew A. Can, Thach V. Griffin, Robert G. Wand, A. Joshua |
author_sort | Valentine, Kathleen G. |
collection | PubMed |
description | [Image: see text] Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼−93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules. |
format | Online Article Text |
id | pubmed-3955360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39553602015-01-24 Reverse Micelles As a Platform for Dynamic Nuclear Polarization in Solution NMR of Proteins Valentine, Kathleen G. Mathies, Guinevere Bédard, Sabrina Nucci, Nathaniel V. Dodevski, Igor Stetz, Matthew A. Can, Thach V. Griffin, Robert G. Wand, A. Joshua J Am Chem Soc [Image: see text] Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼−93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules. American Chemical Society 2014-01-24 2014-02-19 /pmc/articles/PMC3955360/ /pubmed/24456213 http://dx.doi.org/10.1021/ja4107176 Text en Copyright © 2014 American Chemical Society |
spellingShingle | Valentine, Kathleen G. Mathies, Guinevere Bédard, Sabrina Nucci, Nathaniel V. Dodevski, Igor Stetz, Matthew A. Can, Thach V. Griffin, Robert G. Wand, A. Joshua Reverse Micelles As a Platform for Dynamic Nuclear Polarization in Solution NMR of Proteins |
title | Reverse
Micelles As a Platform for Dynamic Nuclear
Polarization in Solution NMR of Proteins |
title_full | Reverse
Micelles As a Platform for Dynamic Nuclear
Polarization in Solution NMR of Proteins |
title_fullStr | Reverse
Micelles As a Platform for Dynamic Nuclear
Polarization in Solution NMR of Proteins |
title_full_unstemmed | Reverse
Micelles As a Platform for Dynamic Nuclear
Polarization in Solution NMR of Proteins |
title_short | Reverse
Micelles As a Platform for Dynamic Nuclear
Polarization in Solution NMR of Proteins |
title_sort | reverse
micelles as a platform for dynamic nuclear
polarization in solution nmr of proteins |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955360/ https://www.ncbi.nlm.nih.gov/pubmed/24456213 http://dx.doi.org/10.1021/ja4107176 |
work_keys_str_mv | AT valentinekathleeng reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT mathiesguinevere reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT bedardsabrina reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT nuccinathanielv reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT dodevskiigor reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT stetzmatthewa reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT canthachv reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT griffinrobertg reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins AT wandajoshua reversemicellesasaplatformfordynamicnuclearpolarizationinsolutionnmrofproteins |