Cargando…

Tuned Critical Avalanche Scaling in Bulk Metallic Glasses

Ingots of the bulk metallic glass (BMG), Zr(64.13)Cu(15.75)Ni(10.12)Al(10) in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of...

Descripción completa

Detalles Bibliográficos
Autores principales: Antonaglia, James, Xie, Xie, Schwarz, Gregory, Wraith, Matthew, Qiao, Junwei, Zhang, Yong, Liaw, Peter K., Uhl, Jonathan T., Dahmen, Karin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955902/
https://www.ncbi.nlm.nih.gov/pubmed/24632786
http://dx.doi.org/10.1038/srep04382
_version_ 1782307637097922560
author Antonaglia, James
Xie, Xie
Schwarz, Gregory
Wraith, Matthew
Qiao, Junwei
Zhang, Yong
Liaw, Peter K.
Uhl, Jonathan T.
Dahmen, Karin A.
author_facet Antonaglia, James
Xie, Xie
Schwarz, Gregory
Wraith, Matthew
Qiao, Junwei
Zhang, Yong
Liaw, Peter K.
Uhl, Jonathan T.
Dahmen, Karin A.
author_sort Antonaglia, James
collection PubMed
description Ingots of the bulk metallic glass (BMG), Zr(64.13)Cu(15.75)Ni(10.12)Al(10) in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.
format Online
Article
Text
id pubmed-3955902
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-39559022014-03-21 Tuned Critical Avalanche Scaling in Bulk Metallic Glasses Antonaglia, James Xie, Xie Schwarz, Gregory Wraith, Matthew Qiao, Junwei Zhang, Yong Liaw, Peter K. Uhl, Jonathan T. Dahmen, Karin A. Sci Rep Article Ingots of the bulk metallic glass (BMG), Zr(64.13)Cu(15.75)Ni(10.12)Al(10) in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials. Nature Publishing Group 2014-03-17 /pmc/articles/PMC3955902/ /pubmed/24632786 http://dx.doi.org/10.1038/srep04382 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Antonaglia, James
Xie, Xie
Schwarz, Gregory
Wraith, Matthew
Qiao, Junwei
Zhang, Yong
Liaw, Peter K.
Uhl, Jonathan T.
Dahmen, Karin A.
Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title_full Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title_fullStr Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title_full_unstemmed Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title_short Tuned Critical Avalanche Scaling in Bulk Metallic Glasses
title_sort tuned critical avalanche scaling in bulk metallic glasses
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955902/
https://www.ncbi.nlm.nih.gov/pubmed/24632786
http://dx.doi.org/10.1038/srep04382
work_keys_str_mv AT antonagliajames tunedcriticalavalanchescalinginbulkmetallicglasses
AT xiexie tunedcriticalavalanchescalinginbulkmetallicglasses
AT schwarzgregory tunedcriticalavalanchescalinginbulkmetallicglasses
AT wraithmatthew tunedcriticalavalanchescalinginbulkmetallicglasses
AT qiaojunwei tunedcriticalavalanchescalinginbulkmetallicglasses
AT zhangyong tunedcriticalavalanchescalinginbulkmetallicglasses
AT liawpeterk tunedcriticalavalanchescalinginbulkmetallicglasses
AT uhljonathant tunedcriticalavalanchescalinginbulkmetallicglasses
AT dahmenkarina tunedcriticalavalanchescalinginbulkmetallicglasses