Cargando…
Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term poten...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956292/ https://www.ncbi.nlm.nih.gov/pubmed/24719772 http://dx.doi.org/10.1155/2014/571285 |
_version_ | 1782307658316906496 |
---|---|
author | Dringenberg, Hans C. Branfield Day, Leora R. Choi, Deanna H. |
author_facet | Dringenberg, Hans C. Branfield Day, Leora R. Choi, Deanna H. |
author_sort | Dringenberg, Hans C. |
collection | PubMed |
description | Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term potentiation (LTP) in the thalamocortical auditory system of mature rats, a developmentally regulated form of plasticity that shows a characteristic decline during postnatal life. Adult rats were chronically treated with fluoxetine (administered in the drinking water, 0.2 mg/mL, four weeks of treatment). Electrophysiological assessments were conducted using an anesthetized (urethane) in vivo preparation, with LTP of field potentials in the primary auditory cortex (A1) induced by theta-burst stimulation of the medial geniculate nucleus. We find that, compared to water-treated control animals, fluoxetine-treated rats did not express higher levels of LTP and, in fact, exhibited reduced levels of potentiation at presumed intracortical A1 synapses. Bioactivity of fluoxetine was confirmed by a reduction of weight gain and fluid intake during the four-week treatment period. We conclude that chronic fluoxetine treatment fails to enhance LTP in the mature rodent thalamocortical auditory system, results that bring into question the notion that SSRIs act as general facilitators of synaptic plasticity in the mammalian forebrain. |
format | Online Article Text |
id | pubmed-3956292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39562922014-04-09 Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo Dringenberg, Hans C. Branfield Day, Leora R. Choi, Deanna H. Neural Plast Research Article Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term potentiation (LTP) in the thalamocortical auditory system of mature rats, a developmentally regulated form of plasticity that shows a characteristic decline during postnatal life. Adult rats were chronically treated with fluoxetine (administered in the drinking water, 0.2 mg/mL, four weeks of treatment). Electrophysiological assessments were conducted using an anesthetized (urethane) in vivo preparation, with LTP of field potentials in the primary auditory cortex (A1) induced by theta-burst stimulation of the medial geniculate nucleus. We find that, compared to water-treated control animals, fluoxetine-treated rats did not express higher levels of LTP and, in fact, exhibited reduced levels of potentiation at presumed intracortical A1 synapses. Bioactivity of fluoxetine was confirmed by a reduction of weight gain and fluid intake during the four-week treatment period. We conclude that chronic fluoxetine treatment fails to enhance LTP in the mature rodent thalamocortical auditory system, results that bring into question the notion that SSRIs act as general facilitators of synaptic plasticity in the mammalian forebrain. Hindawi Publishing Corporation 2014 2014-02-25 /pmc/articles/PMC3956292/ /pubmed/24719772 http://dx.doi.org/10.1155/2014/571285 Text en Copyright © 2014 Hans C. Dringenberg et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dringenberg, Hans C. Branfield Day, Leora R. Choi, Deanna H. Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo |
title | Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
|
title_full | Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
|
title_fullStr | Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
|
title_full_unstemmed | Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
|
title_short | Chronic Fluoxetine Treatment Suppresses Plasticity (Long-Term Potentiation) in the Mature Rodent Primary Auditory Cortex In Vivo
|
title_sort | chronic fluoxetine treatment suppresses plasticity (long-term potentiation) in the mature rodent primary auditory cortex in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956292/ https://www.ncbi.nlm.nih.gov/pubmed/24719772 http://dx.doi.org/10.1155/2014/571285 |
work_keys_str_mv | AT dringenberghansc chronicfluoxetinetreatmentsuppressesplasticitylongtermpotentiationinthematurerodentprimaryauditorycortexinvivo AT branfielddayleorar chronicfluoxetinetreatmentsuppressesplasticitylongtermpotentiationinthematurerodentprimaryauditorycortexinvivo AT choideannah chronicfluoxetinetreatmentsuppressesplasticitylongtermpotentiationinthematurerodentprimaryauditorycortexinvivo |