Cargando…
Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides
Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956467/ https://www.ncbi.nlm.nih.gov/pubmed/24637737 http://dx.doi.org/10.1371/journal.pone.0090180 |
_version_ | 1782307671312957440 |
---|---|
author | Lo, Yu-Li Liu, Yu |
author_facet | Lo, Yu-Li Liu, Yu |
author_sort | Lo, Yu-Li |
collection | PubMed |
description | Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG) shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity for a multifunctional approach using an effective delivery system, such as PEGylated liposomes, to carry epirubicin and ASOs as a potent nanomedicine for improving the clinical efficacy of chemotherapy. |
format | Online Article Text |
id | pubmed-3956467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39564672014-03-18 Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides Lo, Yu-Li Liu, Yu PLoS One Research Article Multidrug resistance (MDR) is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs) against MDR1, MDR-associated protein (MRP)1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm) composed of N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG) shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity for a multifunctional approach using an effective delivery system, such as PEGylated liposomes, to carry epirubicin and ASOs as a potent nanomedicine for improving the clinical efficacy of chemotherapy. Public Library of Science 2014-03-17 /pmc/articles/PMC3956467/ /pubmed/24637737 http://dx.doi.org/10.1371/journal.pone.0090180 Text en © 2014 Lo, Liu http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lo, Yu-Li Liu, Yu Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title | Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title_full | Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title_fullStr | Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title_full_unstemmed | Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title_short | Reversing Multidrug Resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL Using Liposomal Antisense Oligonucleotides |
title_sort | reversing multidrug resistance in caco-2 by silencing mdr1, mrp1, mrp2, and bcl-2/bcl-xl using liposomal antisense oligonucleotides |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956467/ https://www.ncbi.nlm.nih.gov/pubmed/24637737 http://dx.doi.org/10.1371/journal.pone.0090180 |
work_keys_str_mv | AT loyuli reversingmultidrugresistanceincaco2bysilencingmdr1mrp1mrp2andbcl2bclxlusingliposomalantisenseoligonucleotides AT liuyu reversingmultidrugresistanceincaco2bysilencingmdr1mrp1mrp2andbcl2bclxlusingliposomalantisenseoligonucleotides |