Cargando…

About Positivity of Green's Functions for Nonlocal Boundary Value Problems with Impulsive Delay Equations

The impulsive delay differential equation is considered (Lx)(t) = x′(t) + ∑(i=1) (m) p (i)(t)x(t − τ (i)(t)) = f(t),  t ∈ [a, b], x(t (j)) = β (j) x(t (j) − 0),  j = 1,…, k,  a = t (0) < t (1) < t (2) < ⋯<t (k) < t (k+1) = b,  x(ζ) = 0,  ζ ∉ [a, b], with nonlocal boundary condition lx...

Descripción completa

Detalles Bibliográficos
Autores principales: Domoshnitsky, Alexander, Volinsky, Irina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956640/
https://www.ncbi.nlm.nih.gov/pubmed/24719584
http://dx.doi.org/10.1155/2014/978519
Descripción
Sumario:The impulsive delay differential equation is considered (Lx)(t) = x′(t) + ∑(i=1) (m) p (i)(t)x(t − τ (i)(t)) = f(t),  t ∈ [a, b], x(t (j)) = β (j) x(t (j) − 0),  j = 1,…, k,  a = t (0) < t (1) < t (2) < ⋯<t (k) < t (k+1) = b,  x(ζ) = 0,  ζ ∉ [a, b], with nonlocal boundary condition lx = ∫(a) (b) φ(s)x′(s)ds + θx(a) = c, φ ∈ L (∞)[a, b]; θ,  c ∈ R. Various results on existence and uniqueness of solutions and on positivity/negativity of the Green's functions for this equation are obtained.