Cargando…

Coupling of a bifunctional peptide R13 to OTMCS-PEI copolymer as a gene vector increases transfection efficiency and tumor targeting

BACKGROUND: A degradable polyethylenimine (PEI) derivative coupled to a bifunctional peptide R13 was developed to solve the transfection efficiency versus cytotoxicity and tumor-targeting problems of PEI when used as a gene vector. METHODS: We crossed-linked low molecular weight PEI with N-octyl-N-q...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Hui, Zhu, Qing, Liu, Kewu, Zhu, Manman, Zhao, Wenfang, Mao, Yuan, Liu, Kehai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956686/
https://www.ncbi.nlm.nih.gov/pubmed/24648730
http://dx.doi.org/10.2147/IJN.S59726
Descripción
Sumario:BACKGROUND: A degradable polyethylenimine (PEI) derivative coupled to a bifunctional peptide R13 was developed to solve the transfection efficiency versus cytotoxicity and tumor-targeting problems of PEI when used as a gene vector. METHODS: We crossed-linked low molecular weight PEI with N-octyl-N-quaternary chitosan (OTMCS) to synthesize a degradable PEI derivative (OTMCS-PEI), and then used a bifunctional peptide, RGDC-TAT (49–57) called R13 to modify OTMCS-PEI so as to prepare a new gene vector, OTMCS-PEI-R13. This new gene vector was characterized by various physicochemical methods. Its cytotoxicity and gene transfection efficiency were also determined both in vitro and in vivo. RESULTS: The vector showed controlled degradation and excellent buffering capacity. The particle size of the OTMCS-PEI-R13/DNA complexes was around 150–250 nm and the zeta potential ranged from 10 mV to 30 mV. The polymer could protect plasmid DNA from being digested by DNase I at a concentration of 23.5 U DNase I/μg DNA. Further, the polymer was resistant to dissociation induced by 50% fetal bovine serum and 400 μg/mL sodium heparin. Compared with PEI 25 kDa, the OTMCS-PEI-R13/DNA complexes showed higher transfection efficiency both in vitro and in vivo. Further, compared with OTMCS-PEI, distribution of OTMCS-PEI-R13 at tumor sites was markedly enhanced, indicating the tumor-targeting specificity of R13. CONCLUSION: OTMCS-PEI-R13 could be a potential candidate as a safe and efficient gene delivery carrier for gene therapy.