Cargando…

Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats

OBJECTIVE: This study aimed to investigate the effects of low-magnitude, high-frequency vibration with rest days on bone quality at multiple levels. METHODS: Forty-nine three-month-old male Wistar rats were randomly divided into seven groups, namely, vibrational loading for X day followed by X day r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Gong, He, Zhu, Dong, Gao, Jiazi, Fang, Juan, Fan, Yubo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956900/
https://www.ncbi.nlm.nih.gov/pubmed/24637608
http://dx.doi.org/10.1371/journal.pone.0092312
_version_ 1782307730580570112
author Zhang, Rui
Gong, He
Zhu, Dong
Gao, Jiazi
Fang, Juan
Fan, Yubo
author_facet Zhang, Rui
Gong, He
Zhu, Dong
Gao, Jiazi
Fang, Juan
Fan, Yubo
author_sort Zhang, Rui
collection PubMed
description OBJECTIVE: This study aimed to investigate the effects of low-magnitude, high-frequency vibration with rest days on bone quality at multiple levels. METHODS: Forty-nine three-month-old male Wistar rats were randomly divided into seven groups, namely, vibrational loading for X day followed by X day rest (VLXR, X = 1, 3, 5, 7), vibrational loading every day (VLNR), tail suspension (SPD), and baseline control (BCL). One week after tail suspension, rats were loaded by vibrational loading (35 Hz, 0.25 g, 15 min/day) except SPD and BCL. Fluorescence markers were used in all rats. Eight weeks later, femora were harvested to investigate macromechanical properties, and micro-computed tomography scanning and fluorescence test were used to evaluate microarchitecture and bone growth rate. Atomic force microscopy analyses and nanoindentation test were used to analyze the nanostructure and mechanical properties of bone material, respectively. Inductively coupled plasma optical emission spectroscopy was used for quantitative chemical analyses. RESULTS: Microarchitecture, mineral apposition rate and bone formation rate and macromechanical properties were improved in VL7R. Grain size and roughness were significantly different among all groups. No statistical difference was found for the mechanical properties of the bone material, and the chemical composition of all groups was almost similar. CONCLUSIONS: Low-magnitude, high-frequency vibration with rest days altered bone microarchitecture and macro-biomechanical properties, and VL7R was more efficacious in improving bone loss caused by mechanical disuse, which provided theoretical basis and explored the mechanisms of vibration for improving bone quality in clinics.
format Online
Article
Text
id pubmed-3956900
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39569002014-03-18 Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats Zhang, Rui Gong, He Zhu, Dong Gao, Jiazi Fang, Juan Fan, Yubo PLoS One Research Article OBJECTIVE: This study aimed to investigate the effects of low-magnitude, high-frequency vibration with rest days on bone quality at multiple levels. METHODS: Forty-nine three-month-old male Wistar rats were randomly divided into seven groups, namely, vibrational loading for X day followed by X day rest (VLXR, X = 1, 3, 5, 7), vibrational loading every day (VLNR), tail suspension (SPD), and baseline control (BCL). One week after tail suspension, rats were loaded by vibrational loading (35 Hz, 0.25 g, 15 min/day) except SPD and BCL. Fluorescence markers were used in all rats. Eight weeks later, femora were harvested to investigate macromechanical properties, and micro-computed tomography scanning and fluorescence test were used to evaluate microarchitecture and bone growth rate. Atomic force microscopy analyses and nanoindentation test were used to analyze the nanostructure and mechanical properties of bone material, respectively. Inductively coupled plasma optical emission spectroscopy was used for quantitative chemical analyses. RESULTS: Microarchitecture, mineral apposition rate and bone formation rate and macromechanical properties were improved in VL7R. Grain size and roughness were significantly different among all groups. No statistical difference was found for the mechanical properties of the bone material, and the chemical composition of all groups was almost similar. CONCLUSIONS: Low-magnitude, high-frequency vibration with rest days altered bone microarchitecture and macro-biomechanical properties, and VL7R was more efficacious in improving bone loss caused by mechanical disuse, which provided theoretical basis and explored the mechanisms of vibration for improving bone quality in clinics. Public Library of Science 2014-03-17 /pmc/articles/PMC3956900/ /pubmed/24637608 http://dx.doi.org/10.1371/journal.pone.0092312 Text en © 2014 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Zhang, Rui
Gong, He
Zhu, Dong
Gao, Jiazi
Fang, Juan
Fan, Yubo
Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title_full Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title_fullStr Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title_full_unstemmed Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title_short Seven Day Insertion Rest in Whole Body Vibration Improves Multi-Level Bone Quality in Tail Suspension Rats
title_sort seven day insertion rest in whole body vibration improves multi-level bone quality in tail suspension rats
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956900/
https://www.ncbi.nlm.nih.gov/pubmed/24637608
http://dx.doi.org/10.1371/journal.pone.0092312
work_keys_str_mv AT zhangrui sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats
AT gonghe sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats
AT zhudong sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats
AT gaojiazi sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats
AT fangjuan sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats
AT fanyubo sevendayinsertionrestinwholebodyvibrationimprovesmultilevelbonequalityintailsuspensionrats