Cargando…

ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/β-catenin

Proper orchestration of quiescence and activation of progenitor cells is crucial during embryonic development and adult homeostasis. We took advantage of the zebrafish sensory lateral line to define niche-progenitor interactions to understand how integration of diverse signaling pathways spatially a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lush, Mark E, Piotrowski, Tatjana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957165/
https://www.ncbi.nlm.nih.gov/pubmed/24642408
http://dx.doi.org/10.7554/eLife.01832
Descripción
Sumario:Proper orchestration of quiescence and activation of progenitor cells is crucial during embryonic development and adult homeostasis. We took advantage of the zebrafish sensory lateral line to define niche-progenitor interactions to understand how integration of diverse signaling pathways spatially and temporally regulates the coordination of these processes. Our previous studies demonstrated that Schwann cells play a crucial role in negatively regulating lateral line progenitor proliferation. Here we demonstrate that ErbB/Neuregulin signaling is not only required for Schwann cell migration but that it plays a continued role in postmigratory Schwann cells. ErbB expressing Schwann cells inhibit lateral line progenitor proliferation and differentiation through non-cell-autonomous inhibition of Wnt/β-catenin signaling. Subsequent activation of Fgf signaling controls sensory organ differentiation, but not progenitor proliferation. In addition to the lateral line, these findings have important implications for understanding how niche-progenitor cells segregate interactions during development, and how they may go wrong in disease states. DOI: http://dx.doi.org/10.7554/eLife.01832.001