Cargando…

Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes

Adenosine deaminases acting on RNA (ADARs) were discovered as a result of their ability extensively to deaminate adenosines in any long double-stranded RNA, converting them to inosines. Subsequently, ADARs were found to deaminate adenosines site-specifically within the coding sequences of transcript...

Descripción completa

Detalles Bibliográficos
Autores principales: Keegan, Liam P, Leroy, Anne, Sproul, Duncan, O'Connell, Mary A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC395743/
https://www.ncbi.nlm.nih.gov/pubmed/14759252
Descripción
Sumario:Adenosine deaminases acting on RNA (ADARs) were discovered as a result of their ability extensively to deaminate adenosines in any long double-stranded RNA, converting them to inosines. Subsequently, ADARs were found to deaminate adenosines site-specifically within the coding sequences of transcripts encoding ion-channel subunits, increasing the diversity of these proteins in the central nervous system. ADAR1 is now known to be involved in defending the genome against viruses, and it may affect RNA interference. ADARs are found in animals but are not known in other organisms. It appears that ADARs evolved from a member of another family, adenosine deaminases acting on tRNAs (ADATs), by steps including fusion of two or more double-stranded-RNA binding domains to a common type of zinc-containing adenosine-deaminase domain.